
The term “site-specific farming” or “precision
farming” means carefully tailoring soil and crop
management to fit the different conditions found
in each field (Johannsen, 1995). Site-specific

farming is a new system that may incorporate Remote
Sensing (RS), Geographic Information Systems (GIS), and
Global Positioning Systems (GPS) (Blackmore, 1996).
Satellite remote sensing data from Landsat and SPOT have
been used to distinguish crop species and locate stress
conditions in the field. GIS technology is the “brain” of the
precision farming system in that it facilitates knowledge-
based decision making processes by allowing users to store
and overlay separate map layers into a single integrated
digital map. The site specific management concept is based
on the ability to repeatedly locate a position within a field.

Field information can be gathered in three distinct
manners: continuously, discretely, and remotely

(Schueller et al., 1993). On-the-go yield measurements are
a good example of a continuous system. The measurement
of yield on a spatial basis has been performed by several
researchers in recent years (e.g., Searcy et al., 1989;
Vansichen and De Baerdemaeker, 1991). In practice, the
management of local resources in agriculture commences
with yield mapping. Yield maps provide basic information
for the setup of nutrient balances, evaluation of equifertiles
(areas of identical productivity), and enable control of the
efficiency of the whole system (Schung et al., 1993).

Discrete sampling is normally performed based on an
orthogonal grid system to distribute samples uniformly
over the field. This method can provide the greatest
information about the field since the samples (e.g., soil
cores) can be analyzed for many physical and chemical
properties in the laboratory. While this technique seems to
do an adequate job of describing a field, it is expensive due
to labor and sample analysis costs, and requires a lengthy
period to obtain the data.

The use of remote sensing for describing field variation
is probably the most developed method (Schueller et al.,
1993). The information obtained from either aerial
(e.g., aircraft) or satellite images is limited to the soil
surface or plants that are growing on that surface. Either
method for obtaining images must rely on the use of
ground-based reference data to determine what is actually
represented in the image. As remote sensing is incorporated
into site-specific farming, there will be a need for
operational image processing techniques in order to extract
the pertinent information. Image processing techniques
involving classification, algebraic manipulation, and
overlaying in a GIS environment can be used to study and
determine the relationships between remotely sensed data
and reference data.

In agriculture, monitoring of crop growth and
development and early estimates of the final yield are of
general interest. Previous studies have investigated the
relationship between remotely sensed data and crop yield
with varying degrees of success. For example, Tucker et al.
(1979) collected spectral data from twenty 2 × 3 m research
plots on 21 data collection dates to infer final crop yields.
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Correlation coefficients between VI (vegetation index) and
grain yield were low and not significant at early initial
growth stages, but increased consistently to a significant
high of 0.82 at maturity. They also found correlations
decreased with progression of senescence. Thenkabail et al.
(1994) reported that corn and soybean yield data were less
correlated to satellite derived VIs than other crop variables
such as Leaf Area Index (LAI) and wet biomass. In
justifying the linking of remote sensing and crop growth
simulation models for yield estimation, Clevers et al.
(1994) reported that remote sensing alone is not capable of
producing accurate yield estimations.

A review of the literature suggests there is inadequate
knowledge on how to establish an appropriate reference
data sampling strategy and on the use of remote sensing for
spatial variability studies, i.e., to investigate relative
differences in the field rather than yield forecasting. One of
the weaknesses of the point sampling technique is that it
may not depict the spatial variability of the field due to the
generally small number of sampling points per field.

This article presents the results of a study conducted on
evaluating the applications of high accuracy spatial data
sets that were acquired using advanced instrumentation in a
precision farming approach. In this study, yield reference
data were acquired using a continuous sampling strategy
(on-the-go yield) and remote sensing data were obtained
from low altitude aircraft scans producing high spatial
resolution (1 m) images in 12 spectral bands including the
visible and infrared regions. In addition, a high accuracy
(to within a 5 cm accuracy) Digital Elevation Model
(DEM) of the site was used as an ancillary data set.

The study was conducted in a corn field at the Ohio
Management System Evaluation Area (MSEA) site in Pike
County, Ohio (Ward et al., 1994) and had the following
objectives:

1. Devise an analysis strategy that will help investigate
the relationships between on-the-go yield-maps,
Multi-Spectral Scanner (MSS) images, and DEM
data sets that were acquired using different
instrumentation;

2. Assess and map the magnitude and extent of the
spatial distribution of corn yield in the field;

3. Determine the relationship between on-the-go yield
and MSS data; and

4. Determine the relationship between on-the-go yield
and elevation data.

SITE DESCRIPTION

The study site was located on the 260 ha Vanmeter Farm
near Piketon, Ohio, centered approximately at long. 83° 02′
00′′ W and lat. 39° 02′ 30′′ N. The site overlies the Scioto
River Alluvial Valley Aquifer which was formed when
fluvial and glacial-fluvial materials were deposited in the
preglacial valley of the Teays River. Huntington, Rossburg,
Nolin, and Landes silt loams (fluventic hapludolls) are the
predominant soil series with some overlying sands that
grade into gravel at a depth of 2 to 3 m. The research was
performed on a 9 ha field that has been in continuous corn
since 1991. Primary tillage is chisel plow and there are

annual inputs of inorganic N fertilizer (about 180 kg N/ha),
alachlor and atrazine herbicides, and fonofos insecticides.
Mean annual precipitation at Piketon is 969 mm and in the
study year (1994) there was 1002 mm of precipitation.
Rainfall in April, May, June, July, and August 1994 was
168%, 81%, 64%, 121%, and 147% of long-term mean
monthly values.

Soil characterization studies have been performed by the
Natural Resources and Conservation Service (NRCS) and
by Salchow et al. (1996). An interpretation of this
information by Wu et al. (1996) is presented in figure 1.

DIGITAL ELEVATION DATA

A DEM (fig. 1) was developed from individual Global
Positioning System (GPS) data points that were acquired
by driving a Sports Utility Vehicle (SUV), equipped with a
GPS receiver and datalogger, across the field prior to
planting (11 May 1994). A stationary GPS receiver was
located in the center of the field for differential correction
purposes. Individual data points were acquired every 10 s
by the GPS receiver while the SUV was driven at about 16
to 24 km/h depending on the topography of the area. This
resulted in data points every 40 to 70 m. The SUV was
driven parallel to the rows of corn stubble on a spacing of
about 25 m between consecutive tracks. The data collection
approach and mapping software was developed by the
Center for Mapping at The Ohio State University. It
provides elevation information with an accuracy of 0.05 m.
The DEM was generated using a local coordinate system
where the location of the differential GPS receiver
represented the origin.

ON-THE-GO YIELD DATA

The 1994 yield data of the research site were collected
by a combine harvester where the magnitude of the yield
was near-instantaneously recorded by an Ag Leader
2000 yield sensor. While yield data were tagged with a
precise time code (s), a GPS unit was also installed to
record the positional information (latitude and longitude)
of the combine at that time. Positional data sets were also
tagged with time codes so that the corresponding yield for
a specific location could be attributed.

Positional data were collected at two locations (rover
and base) for differential correction purposes. The rover
was the combine harvester whose position was recorded
every second with the help of a GPS receiver and computer
configuration located in the combine. The second GPS
receiver (base station) was located at The Ohio State
University (about 100 km from the site). A fixed base
station was used so that a differential correction procedure
could be applied to increase the overall accuracy.
Differential correction of the combined positional data was
conducted using software called GPSWIN that was
developed by the Center for Mapping at The Ohio State
University. The accuracy of the resulting data set was
approximately 3 to 5 m in the X,Y directions. After the
positional data were differentially corrected, the yield data
were attached to the corresponding positions using a time
code common to both data sets. Positional data recorded in
latitude and longitude were converted into meters using a
relative local reference coordinate. The raw data, which
consisted of yield estimates for areas of about 4 m × 5 m,

SITE CHARACTERIZATION AND DATABASE

DEVELOPMENT

490 TRANSACTIONS OF THE ASAE



were processed to a yield map using the kriging
geostatistical technique in ARC/INFO (ESRI, 1995).

MSS DATA

Digital images of the MSEA research site (at 1 m
resolution) were acquired using a multi-spectral scanner
mounted on an aircraft operated by the EPA Environmental
Monitoring Systems Laboratory in Las Vegas, Nevada
(EMSL-LV). The scanner system used was a Daedalus
Enterprises Model 1260 Instrument. The system uses a
rotating mirror to direct radiated energy from the surface of
the earth onto sensing detectors with an instantaneous field
of view of 2.5 milliradians. The sensor has 12 spectral
bands whose wavelengths include the ultraviolet, visible,
near infrared, and thermal infrared. Images were obtained
several times in 1994 and a cloudless or almost cloudless
day occurred for each flyover. All MSS data were
geocorrected and georeferenced to the Universal Transverse
Mercator grid system, zone 17. All data correction and
referencing was performed by the EMSL-LV.

The image which was obtained at the end of the growing
season on 15 September 1994 was used in this particular

study. The 15 September image was selected since it
represented the most mature stage of the crop with the
anticipation that the relative spatial variability of corn yield
would not change much until harvest. Six bands, namely
B5 (0.55-0.60 µm), B6 (0.60-0.65 µm) , B7 (0.65-0.69
µm), B8 (0.70-0.79 µm), B9 (0.80-0.89 µm), and B12
(1.55-1.75 µm) were used because of their general
importance in an agricultural environment. In addition,
seven Vegetation Indices (VIs) that are ratios and
differences of the selected bands were also developed
(see table 2).

DATA ANALYSIS
DATA CO-REGISTRATION

The three spatial data sets (MSS, on-the-go yield, and
DEM) were co-registered to a common local coordinate
system that was established for generating the DEM. The
DEM was chosen as a reference since it was originally
based on a local coordinate system, and also represented a
very high spatial accuracy. A map-to-map co-registration
was performed in ARC/INFO in a two-step procedure by
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Figure 1–Soils and topographic map for the continuous corn treatment at the Ohio MSEA (elevation in m).



first creating links for control points and then using the
control-points link-file in a method called GRIDWARP,
which involves the use of a least-square algorithm to fit a
first order polynomial (linear) to the control points. All
cells in the grid were then transformed using the fitted
equation. The Root Mean Square Error (RMSE) that was
associated with the transformation was about 5 m in both
the X and Y directions. Road intersections and points along
the field boundaries were used as control points.

During coordinate transformation, the cubic convolution
resampling technique was used to determine the value of
the output grid cells. Cubic convolution uses digital values
of sixteen neighborhood pixels in a 4 × 4 window to
calculate an output value with a cubic function where
original pixels (within the window) that are farther away
from the new cell have exponentially less weight than those
closer to the new cell. The cubic convolution is the most
accurate resampling method (ERDAS, 1991). Along with
cell values, cell sizes for the DEM and on-the-go yield
were set to 1.0 m to match with the MSS grid cell size. An
alternative way of doing this is to set the grid cell sizes for
the on the-go-yield at 5 m and degrade the DEM and the
MSS data to 5 m resolution since the yield data represented
an approximate 4 m × 5 m combine area. However, since
spatial analysis was not intended to be done at a single grid
cell or pixel level, but rather with an aggregated classes that
consisted of thousands of cells, it was decided to work with
a deaggregated yield map at 1 m resolution. The
deaggregation approach provides equal number of cells for
all spatial data sets in a given class, and simplifies
presentation and interpretation of the data without affecting
the results.

YIELD CLASSIFICATION

For meaningful interpretation of the spatial variability of
yield in the field, yield classes were established at three
levels. Using a clustering algorithm called ISOCLUSTER
that employs the migrating means technique to separate all
cells into unimodal groups, and a maximum likelihood
classification technique called MCLASSIFY in
ARC/INFO, yield data were classified into 3 (Level I),
6 (Level II), and 12 (Level III) classes. Due to merging of
clusters that were separated by less than two standard
deviations the Level II classification resulted in only five
out of six requested classes.

MSS AND ELEVATION VERSUS YIELD CLASS VALUES

Yield classes were used to extract the corresponding
mean MSS band digital numbers and elevation values for
each class. A GIS masking technique was used to overlay
yield nominal classes over the MSS images and an
elevation data layer so that the mean and standard deviation
of all pixels falling in a particular yield class could be
queried.

Correlation statistics between class mean yield values
and mean MSS parameters (bands and VIs) and between
mean yield and mean elevation data were calculated.
Similarly, correlation statistics between mean elevation
values and mean MSS parameters, that were based on yield
classes, were also calculated. For each of the mean yield
classes, linear regression equations were developed
between mean yield values and mean MSS parameter
values.

RESULTS AND DISCUSSION
Figures 2 and 3 show yield classification results at

different aggregation levels. The spatial interpretation of
the classes becomes complex as the number of classes
increases (low aggregation levels). For example, at Level I
(highest aggregation) where there were only three yield
classes, the fragmentation (scatter) of one class in the
different parts of the field was small while in Level III
(not shown) a given class was scattered throughout the field
and was too fragmented to be easily read. With 12 classes
there were many areas in the field which were less than
0.01 ha in size.

Characteristics of the classes are reported in table 1.
Band 9 (NIR) data has been reported in the table because it
has the best correlation with yield (see table 2). On-the-go
yield data (class mean values) varied from 5.1 to
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Figure 3–Spatial distribution of five yield classes.

Figure 2–Spatial distribution of three yield classes.



9.05 tons/ha in the 3-class aggregation and from 3.8 to
10.4 tons/ha in the 12-class aggregation (table 1).

Correlation statistics between yield classes at three
levels of aggregation and MSS parameters and between
elevation and MSS parameters are shown in table 2.
Histograms (not shown) and normality tests established
that the yield data and spectral bands and VIs which were
highly correlated to the yield data had normal distributions.
Generally, highly significant linear relationships between
most MSS parameters and yield and between MSS and
elevation were observed. Correlation coefficients which
were significant at the 0.05 level ranged from 0.74 to 0.99.

Bands 8 and 9 (near-infrared bands) were the most
correlated (among individual bands) with yield data.
Figure 4 shows a linear regression fit between on-the-go
yield and band 9 with an R2 of 0.99. Bands 6 and 7 (red)
were the least correlated bands with yield and elevation. All
VIs were significantly correlated to both yield and
elevation. While bands 8 and 9 showed the highest
correlations with yield in the 3-class and 5-class
aggregation levels, NDVI1 and NDVI2 showed the highest
correlation in the 12-class aggregation level. For all
aggregation levels, NDVI1 and NDVI2 showed the highest

correlation with elevation. The extent of correlation
between MSS parameters and yield and between MSS and
elevation decreased slightly as the aggregation level
decreased (more classes). One of the reasons for the
decrease of correlation with decreasing aggregation might
be due to the accuracy of the co-registration of the two data
sets. By producing more yield classes the size of some of
the class fragments approaches the size of the positional
error of the MSS data set and results in more wrong pixels
being included in a particular yield class.

GENERAL DISCUSSION
The existence of several distinct yield classes and the

high correlation between these classes and the spectral data
poses two important questions: (1) what caused the distinct
yield classes; and (2) how can spectral data be used as an
aid to making site specific farming decisions?
Unfortunately, there is no clear answer to either question.
The yield classes might be due to elevation differences; soil
differences; management practice inconsistencies; stresses
due to weeds, insects, and disease; or a combination of
several of these factors.

The importance of elevation has already been
demonstrated. Elevation might influence the type of soil and
soil water availability. If soil water availability is the primary
reason that elevation is important then it might be expected
that the results would show considerable variability from
year to year. For example, at the Missouri MSEA the yield in
the most productive part of the field was at least double those
of the lowest yielding areas in a corn yield map study
conducted for four years (Sudduth et al., 1995). They also
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Table 1. Basic statistics for corn yield, band 9, and elevation based on three levels
of yield classes (aggregation levels)

Yield B9 Elevation

Standard Standard Standard
Class- Cell Area Mean Deviation Mean Deviation Mean Deviation
ID Count (ha) (tons/ha) (tons/ha) (DN) (DN) (m) (m)

Level I: 3 Yield Classes

1 10606 1.06 5.14 0.97 139 23 2.07 0.25
2 29918 2.99 7.50 0.51 147 20 2.14 0.23
3 43118 4.31 9.05 0.53 153 22 2.17 0.27

Level II: 5 Yield Classes

1 4106 0.41 4.20 0.76 135 24 1.99 0.22
2 8642 0.86 6.08 0.46 143 22 2.12 0.25
3 20999 2.10 7.42 0.33 147 20 2.14 0.22
4 25862 2.59 8.47 0.28 150 22 2.15 0.24
5 24030 2.40 9.44 0.42 154 22 2.18 0.29

Level III: 12 Yield Classes

1 2466 0.25 3.85 0.72 132 26 1.96 0.20
2 3759 0.38 5.27 0.34 142 21 2.07 0.25
3 4973 0.50 6.26 0.23 141 23 2.12 0.25
4 7654 0.77 6.98 0.16 147 20 2.14 0.24
5 7791 0.78 7.44 0.12 147 19 2.14 0.22
6 8181 0.82 7.84 0.11 147 19 2.16 0.22
7 8428 0.84 8.20 0.10 148 22 2.13 0.23
8 9800 0.98 8.52 0.09 150 22 2.16 0.24
9 9807 0.98 8.85 0.10 152 20 2.15 0.27

10 10826 1.08 9.21 0.11 152 20 2.18 0.29
11 7644 0.76 9.60 0.14 154 22 2.18 0.30
12 2313 0.23 10.38 0.50 169 25 2.19 0.18

Table 2. Correlation matrix between yield, elevation and MSS parameters*†

MSS Bands Vegetation Indices (VIs)

Classes B5 B6 B7 B8 B9 B12 SVI1 SVI2 SND1 SND2 NDVI1 NDVI2 ND2 DEM

Yield

3 0.97 –0.77 –0.69 1.00 1.00 –0.90 0.99 1.00 1.00 1.00 0.99 0.99 1.00 0.99
5 0.88 –0.22 –0.06 1.00 1.00 –0.68 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.92

12 0.74 0.01 0.14 0.92 0.92 –0.72 0.93 0.93 0.90 0.90 0.94 0.94 0.91 0.92

Elevation

3 0.91 –0.87 –0.80 0.99 0.98 –0.96 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00
5 0.82 –0.28 –0.15 0.94 0.94 –0.89 0.94 0.96 0.97 0.97 0.95 0.95 0.97 1.00

12 0.65 –0.03 0.09 0.82 0.81 –0.77 0.84 0.83 0.82 0.81 0.86 0.85 0.85 1.00

* Statistics in italic type were not significant at 0.05 level of significance.
† B5, B6 . . . : MSS bands. SVI1 = B8/B6; SV12 = B9/B7; SND1 = B8/B12; SND2 = B9/B12; NDVI1 = (B8 – B6)/B6 + B8); NDVI2 = (B9 –

B7)/(B7 + B9); ND2 = (B9 – B12)/(B9 + B12).

Figure 4–Regression equation between on-the-go yield and near
infrared band 9.



reported that in wet years the highest yields occurred in the
higher parts of the field while in dry years the highest yields
occurred in the drainage (low) areas of the field. If the
influence of elevation varies from one year to the next, its
use in helping make precision farming decisions is limited.
Also, several years of spatial crop data for a field would need
to be collected to evaluate this factor.

Site-specific farming decisions are sometimes made
based on soil spatial variability. If reference is made to the
Soil Survey of Pike County (Hendershot, 1990) it is found
that the whole field is mapped as a Huntington soil.
However, based on several detailed studies that provided
much more information than would normally be available
for commercial farms, the map shown in figure 1 was
developed. If this map is compared to figure 2 and 3 it can
been seen that in places there is some relationship between
the yield classes and soil differences. For example, the low
yielding area on the west central side of the field
corresponds to an area of Rossburg soil. Also, visual
inspection of the field suggests that the Landes and Rossburg
soils in the southeast extend much further into the field than
is mapped on figure 1. These results indicate that an even
more detailed field survey is needed if precision farming
decisions are based primarily on soils data.

It is speculated that results shown in figures 2 and 3
reflect some management practice inconsistencies; and
stresses due to weeds, insects, and disease. Inspection of
the field on several occasions early in the growing season
also located several small areas in the field where there
were low plant populations perhaps due to variable seed
and fertilizer applications. However, insufficient reference
data is available to map these factors. Early in the growing
season there was johnsongrass in several locations and
particularly in the vicinity of the low yielding area on the
west central side of the field. Johnsongrass was spot-treated
with herbicides. Weed surveys on 2 August, 24 August, and
5 September 1994 found some bur cucumber in the low
yielding areas on the west-central side of the field and near
the southeast corner. These two locations also correspond
to the areas of Rossburg soil discussed previously. On
5 September, common chickweed was found in the low
yielding area just to the north of the center of the field.
However, weed surveys on all these dates were inadequate
to establish if weed pressures in any one of the reported
locations were any more or less severe than at other
locations in the field.

Based on the results of this study, it would seem that site-
specific farming decisions should be based on several types
of data which encompass more than one growing season.
Ideally, in the future a spectral sensor will be mounted on
machinery which crosses a field (plow, planter, or harvester)
and will be integrated with yield, soils, and microtopography
information. This type of information might then be used in
conjunction with plant, environmental, and economic
simulation models to determine an appropriate management
practice. For example, using a stochastic approach with
Groundwater Loading Effects on Agricultural Management
Systems (GLEAMS), it was predicted that nitrate leaching
would be highest in the low yielding Rossburg soils on the
west side of the plot (Wu et al., 1996). On the other hand, the
Nolin soils near the low yielding area in the north west corner
had the lowest nitrate leaching. Therefore, based on

environmental and yield considerations a site-specific
farming decision for these two portions of the field might be
different.

CONCLUSIONS
Each of the four objectives of this study was met. First,

a methodology was developed to integrate and analyze
three spatial data sets. The GIS environment was found
effective to co-register yield maps, elevation, and remote
sensing data sets with one another for spatial analysis.

The spatial variability of on-the-go yield data was
mapped at three levels of aggregation. Visual interpretation
of the yield classes showed that the Level 1 aggregation
resulted in less fragmented classes. It was possible to
identify low, medium, and high yield classes.

The large difference in yields across the field suggests
that a site-specific farming strategy might be considered.
This was surprising considering the small topographic
changes in the field and a county soil survey which
indicates there is only one soil series in this field.

The relationship between yield data and MSS
parameters was determined to be strongly linear (r = 0.99).
Near infrared bands were more strongly correlated than
visible bands.

There was a strong linear relationship between yield
data and elevation (r = 0.92). If the reason elevation was
important in its influence on water availability then the
establishment of a beneficial precision farming strategy for
this field would be difficult.

The high correlation between the yield data and the
spectral information indicates that spectral data might be
useful in precision farming. How this information might be
used is unclear and further research is needed. In particular,
research needs to be done over multiple years on other soils
and with other crops and tillage practices.
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